Skip to main content

封面

Barry H. Cohen - Explaining Psychological Statistics-Wiley (2013)

心理统计学(第3版)

作者: B.H.科恩 出版社: 华东师范大学出版社 原作名: Explaining Psychological Statistics 译者: 高定国 / 周欣悦 出版年: 2011-2 页数: 935 定价: 98.00元 丛书: 心理与教育研究方法丛书 ISBN: 9787561782057 豆瓣评分 9.2 166人评价 5星70.5% 4星22.3% 3星6.6% 2星0.6% 1星0.0% 评价:
写笔记 写书评 加入购书单 添加到书单分享到
推荐

内容简介 · · · · · · Barry Cohen教授所著《心理统计学》(第三版)是一本广受欢迎的心理统计学教材。它是一本非常全面的心理统计学教材,既包括入门性的统计学知识(如零假设检验的基本概念和局限性),也包括心理统计的高级内容(如复杂设计方差分析和多元回归分析)。 虽然是一本统计教材,但作者无时不考虑结合研究设计来解释有关概念,因此该书的重点是讲授各个统计公式或手段的适用条件以及如何解释统计结果的意义。作者实验心理学博士出身,在纽约大学教授心理学统计学超过30年,通过阅读本书,你会深刻体会“将实验设计与数据处理相结合”的妙处。 这本书的另一个优点是,它既适合于那些对统计不甚了解的人,也适合于专业研究人员(包括硕士生和博士生)。它每章基本上包括ABC三个部分,每个部分是相对独立的,初学者可以只看A和B部分的内容;而在C部分(虽不能只说更高级),作者介绍了很多最近才出现的分析手段,也反映了数据处理的一些发展趋势,对心理学研究者非常有帮助。

投诉 目录 · · · · · · 第一部分 描述性统计 第1章 心理统计概论 第2章 频数表、图和分布 第3章 集中趋势和变异的测量 第4章 标准分和正态分布 第二部分 单样本和双样本假设检验 第5章 假设检验导论:单样本z检验 第6章 区间估计和t分布 第7章 两独立样本均数t检验 第8章 统计检验力和效应量 第三部分 每个被试涉及两次测量的假设检验 第9章 线性相关 第10章 线性回归 第11章 配对t检验 第四部分 方差分析,不包含重复测量方差分析 第12章 单因素独立样本方差分析 第13章 多重比较 第14章 两因素方差分析 第五部分 重复测量方差分析 第15章 重复测量方差分析 第16章 两因素混合设计方差分析 第六部分 多元回归及其与方差分析的关系 第17章 多元回归 第18章 用回归方法做方差分析 第七部分 非参数统计 第19章 二项分布 第20章 卡方检验 第21章 顺序数据的统计检验 附录A 统计表格 参考文献

一共读过3本不同的统计书 相对于张厚粲老师、甘怡群老师的书来说 这本是我个人喜欢的一套 比较适合自学 国内老师写的书太偏教科书 不跟着老师上课 很多东西理解其他不太容易。虽然书本身非常厚(接近1000页),但是结合每个Section后的练习,加强及巩固很快也能读完掌握。

大二下学期课程。

登泰山而小天下 正如第一章开篇所言:“如果在阅读本章之前,你还没有阅读前言的话,那就请务必先读一下前言。许多读者都习惯跳过前言直接阅读正文,那是因为很多书的前言都没有什么有价值的信息,它常常是作者介绍自己或感谢一些读者不认识的人。但是本书的前言不是这样,它具有特别重要的功能。”关于这本书的特点和优点,在作者的前言与译者的介绍中已经讲得再明白不过,读完全书后回过头来再重温前言时此番体会愈感深切。于是我更多是想从一个使用者的角度来写点看法,即便如此,下文也免不了要拾起作者与译者的牙慧。

作为一个此前已经具备初阶统计学知识的读者,这本进阶甚至高阶的统计学教材给我留下的最深印象莫过于:之前在初阶统计学中业已建构的“感觉良好的”知识表征体系,会随着学习的深入被不断解构,这个转换过程是颇有些难受的。随着学习的渐入佳境,一种“感觉更好的”知识表征体系逐步成型,终于才生出豁然开朗的快感来。

这两种体系的区别大致有三点(拿Gravetter教授所著Statistics for the Behavioral Sciences与本书对比):其一,格氏在假设检验之前讲解的离散概率和二项分布,被科氏全部挪到了非参数统计中,以免打乱正态分布概念讲解的流畅性(这一点并不是很重要)。其二,对于相关与回归,格氏将其作为既不承上也不启下的孤立章节,科氏则将其放在配对样本t检验之前讲解,此后逐章探讨其与假设检验、方差分析的紧密关系。第三点建立在第二点的基础上,也是最重要的一点:如果说格氏的重头戏是方差分析,给人以方差分析是统计学之皇冠的感觉,那么尽管方差分析也仍然占去科氏的很大篇幅,但全书的高潮无疑是多元回归,原来方差分析不过是多元回归的一个特例。

以上区别并非在评判两者的高下,循着不同的写作目的、面对不同层次的读者,这两本书都是非常好的教材。尽管新旧体系的转换之“痛”是一种代价,但格氏对于推断性统计基本概念的深入讲解,无疑对我理解科氏有着很大助益。这也不是说本书就不适合初学者,它同样是从最基本的统计学知识由浅入深逐步展开的,只是越到后面更高级的内容,越需要耐心细致的逻辑思维参与阅读(有几节我还得反复咀嚼),而初学者往往会望而却步。

此书带给我的另外一个“颠覆”,则是破除了原先对心理统计学的一个误解,即以为用于处理实验的大多数统计学方法都是早在数十年前就已经固定下来的,修订教材顶多只是讲得再明白一些(也许对于初阶教材确实如此)。当看到科氏不时引用近几年的统计学文献时,才意识到它是在不断发展的,并带来更新更高级的方法。就连假设检验这么根深蒂固的方法,也不断受到来自“统计学家具有逻辑性的批判”。

说完对书的感受再说对作者的印象。我觉得在这本书里,作者同时扮演着两个角色。一个角色好比博物馆的讲解员,说起话来按部就班、清晰明了,书中涉及基本概念和计算过程的讲解大抵如此。很多章节开篇都由先前章节的概念或方法“变化”后引出,在讲完重要内容后又马上拿先前的概念或方法进行对比、分析异同,由此不断加深对各个知识点的理解,进而织成一个周密的体系。

另一个角色有如博物馆的鉴赏家,说起话来旁征博引、妙语连珠,书中涉及核心概念和方法程序的讲解通常这样。其中最令人叫绝的当数通过“垃圾邮件过滤器”这样贴切的比喻、结合贝叶斯定理对显著性水平和检验力所作出的详细解释(第5章和第8章的C部分),让我领会到了看似程式化的假设检验背后重要而深刻的含义。还比如作者舍弃初阶教材在方差分析中计算SS常用的原始数据公式,通过对F值实际含义的分析根据样组标准差来直接计算MS(或SS)——前者是形式上的一致性便于记忆,后者是实质上的一致性便于理解(这亦是一种转换之“痛”)。

应该说,在本书的大多数章节里,作者都做到了这两个角色的无缝衔接,一如各章ABC三个部分的划分。但偶尔也会有疏漏。比如第13章讲解的“趋势成分分析”,作为这个方法的核心,作者对于在什么情况下使用此方法和如何检验趋势成分的显著性都讲得很清楚。但是读过之后,我没明白的是此方法关注的“趋势”与一般的方差分析关注的“差异”如何关联、及趋势成分显著实际上意味着什么?对于已经掌握这一方法的人而言,这小小的疑问应该是不言自明的;但对于刚刚接触这一方法的我来说,确实是个困扰。我是在翻了另外一本进阶教材(Howell教授所著Statistical Methods for Psychology)后弄明白的。

此外,对于各章ABC三个部分的划分,整体上是合乎逻辑和人的认知方式的。但个别章节恐怕值得商榷。特别是最后一章,把初阶教材都会讲到的Kruskal-Wallis检验和Friedman检验放到C部分作为“选读材料”,其实大可以合并到B部分,也许作者太追求形式上的统一美感?又,在第16章C部分讲解球形假设的数学内涵之前,已经两次讲到了这一概念,如果先就把这一概念讲清楚,似乎更顺一些,起码可以省去一些篇幅。

当然了,我所谓的些许“不足”是遮蔽不住全书所闪现出的火花和光芒的,那种读到妙处“一览众山小”的高峰体验着实让人回味无穷。作为一本才出到第三版、且每一版都比前一版增加了大量篇幅和深度的教材,本就不必苛求。在最近一次与作者的邮件交流中,得知第四版正在编写中(而作者在本书前言中提到的在线下载的新第22章实际并未完稿,将出现在第四版),作者还很关切地问及自己的著作在中国出版的情况——就如高定国老师在前言中提到的本书翻译过程中作者对译著的重视那样。面对这样一位珍视自己的作品又善待读者的好作者,教我如何不对未来充满期待呢?

深入浅出,通俗易懂!让你爱上统计学! 这篇书评可能有关键情节透露

很久没写书评了,但是这本书让我如获至宝!非常通俗易懂的一本统计书。之前自己对统计书非常排斥,但是看了这本书后,我才发现统计也是可以读懂的!这本书在讲解定义时都会附上例子,降低理解的难度,真的非常好!尤其是例子加上去,让我对每个定义反而印象更深刻了!真的很佩服作者的能力,看了这么多本统计书,唯有这本我能看懂!真心喜欢!强烈推荐!

95 假设你记录了每个被试解决问题的分钟数。5个被试的数据分别是4,9,9,16,和100(你是一个非常有耐心的研究者) 127,128 例如,一个叫MENSA的全国性组织是一个高IQ人群的俱乐部。只有IQ在人群中列前2%的人才有资格加入。如果你想加入这个组织且已经知道你的IQ,那么你想知道的就是成为会员的最低IQ究竟是多少?通过分析前文关于IQ的分布,你会发现实际上这是很容易的问题(即使你没有资格加入MENSA)……设有一个组织叫MEZZA,...

第186页 第六章 区间估计和t分布

总体标准差(σ)未知 用样本的无偏标准差替代。 大样本z检验公式 比单样本z检验多一个附加假设 t分布类似于标准正态分布(钟形 对称 两端无限延伸 均数为0) 由于大Z公式分母s不是一个常数 意味着z在N小时 并不服从正态分布。 事实上 它服从的是t分布。 我们用自由度(df)来指定t分布。df越大 t分布越接近正态分布。 ❤ 总体均数(μ)未知 区间估计和置信区间 样本量公式(W=置信区间的宽度)

零假设检验 (null hypothesis testing) 标准语句: H0:μ=μ0。备择假设:HA:μ≠μ0。 p值:接受零假设的概率。 α水平:零假设为真的概率。 检验统计量 用于假设检验计算的统计量。实际上是对总体参数的点估计量 但点估计量不能直接作为检验的统计量 只有将其标准化后 才能用于度量它与原假设的参数值之间的差异程度。 (标准化 是指经过修正后 使其符合某种众所周知的分布 如t分布与F分布) 一类错误 拒绝了事实上为...

第105页 第四章:标准分和正态分布

z 标准分( μ σ)相对地位量数 均数为0 标准差为1 适用于形态相似的分布之间的比较。 z是线性转换 线性转换不改变分布形态。 标准正态分布(0 1) 抽样分布 组均数的分布被称为抽样分布。 由于样本均数的变化不如总体中个体的变化那么大 因此抽样分布的标准差将小于总体的标准差。样本变大时(N),样本均数的标准差会更小一些。 标准误 均数的抽样分布的标准差。 中心极限定理 当一个总体不呈正态分布时 均数的抽样分布会比...